
CHAP.01 : STEREOCHIMIE DES MOLECULES ORGANIQUES

Partie A: Rappels de TS

A vous de souer!

A vous de jouer ! : Compléter le tableau :

Nom de la molécule et famille chimique	Formule développée	Formule semi-développée	Formule topologique
Propane (Alcane)	H H H H	Hyc / CHe CHg	^
Initan - 2 - d	H 0 H E C H H H H	H ₃ c CH ₂ CH CH ₃	OH
pentar-2-one	trop long	H ₃ C CH ₂ CH ₃	
acide propandique	H C H	Hgc CHa CON	OH

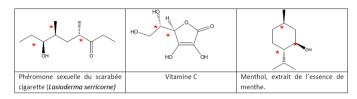
A vous de jouer!

Donner la formule topologique du butan-2-ol. Donner une représentation de Cram mettant en évidence l'arrangement spatial des atomes autour de l'atome de carbone 2.

On a en fait dessiné un des deux énantiomères possibles.

La représentation de Cram peut se faire sur une forme

PARTIE CHIMIE ORGANIOUE

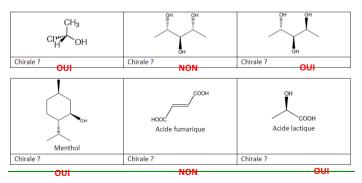

A vous de souer !O

Donner la représentation de Newman des molécules suivantes (la position de l'observateur est indiquée par une flèche) :

HO
HIMITATION
H
HO
OH

Donner la représentation de Cram de la molécule suivante donnée en représentation de Newman :

A vous de jouer ! Repérer les centres stéréogènes sur les molécules :



Attention:

- les centres stéréogènes sont des atomes asymétriques ou des doubles liaisons qui peuvent avoir une configuration Z ou E.
- les C* doivent être reliés à 4 groupes différents !!!

A vous de Jouer 10 Parmi les molécules ci-dessous, lesquelles sont chirales ?

Pour chacune, on repère s'il y a un plan ou un centre de symétrie : si oui, alors elle est achirale. Si on ne voit pas ce plan ou ce centre, alors on dessine son image spéculaire (attention , c'est le symétrique de la molécule par rapport à un plan), et si cette image spéculaire n'est pas identique à la molécule de départ alors les deux molécules sont chirales et énantiomères entre elles.

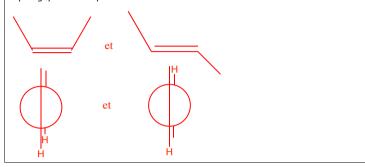
PARTIE CHIMIE ORGANIOUE

Généralisation :

- Une molécule qui ne possède qu'un seul carbone asymétrique (exemple : l'acide lactique) est toujours CHIRALE.
- Une molécule qui possède un plan de symétrie ou un centre de symétrie (exemple : acide fumarique) est toujours ACHIRALE.
- Dans tous les autres cas, pour savoir si une molécule est chirale, il faut dessiner son image par un miroir plan.

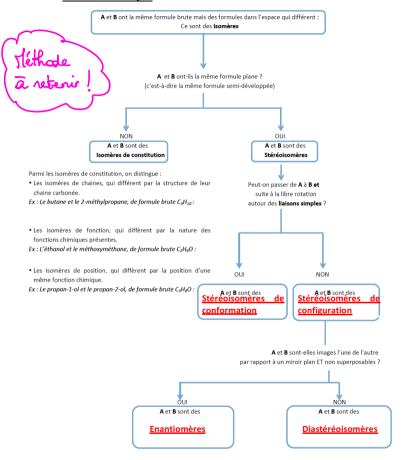
A vous de jouer!

Donner la représentation de Cram des deux stéréoisomères de configuration du 2-aminobutane.


◆ Attention: Il y a deux façons, et deux seulement de disposer 4 substituants différents autour d'un carbone asymétrique. Les deux structures constituent deux configurations. A notre niveau, on ne considèrera que des atomes de carbone asymétriques.

* Astuce: pour être sûr de représenter les deux configurations distinctes, il faut en représenter une, puis juste permuter deux groupes. !!!

lci, dans l'exemple précédent, on a laissé la chaine principale telle quelle eton a permuté le aroupe méthyle, et l'hydrogène.

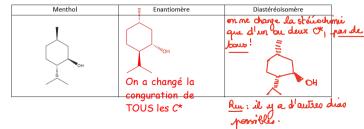

A vous de jouer !@

Représenter les deux stéréoisomères de configuration du but-2-ène sous forme topologique et en représentation de Newman.

☐ Ces deux molécules ne sont pas identiques car elles ne sont pas superposables; elles ne peuvent pas se déduire l'une de l'autre par des rotations autour de liaisons simples (remarque: on ne peut pas effectuer de rotation autour de liaisons multiples). Elles constituent deux configurations distinctes du but-2-ène. Celles-ci sont dues au fait que les carbones éthyléniques portent des substituants différents.

PARTIE CHIMIE ORGANIQUE

A vous de jouer !@


A	В	Relation de stéréoisomérie		
H ^H ₂ C CH ₉	HH3C H	Stéréoisomères conformation (on a	de justo tou	
ОН СООН	OH COOH		- 7-7	
Acide lactique	Acide lactique	Enantiomères (La	steeochin	
HOCC COOH Acide maléique T _{fici} = 140-142°C	HOOC Acide fumarique T _{fue} = 299-300°C	Diastéréoisomères	<u>(Z</u>	
Nommer les deux configurations ci-dessus.				
HOW OH	Sterechung		ec.	
cis-isohumolone	charge trans-isohumolone	DIAGIEREOISOIVIER	<u> </u>	

Généralisation :

Si une molécule A possède plusieurs carbones asymétriques et que **tous** changent de configuration (exemple de l'acide lactique), on se trouve face à un ... ENANTIOMERE... de la molécule A.

Si seuls certains carbones asymétriques changent de configuration (exemple de l'isohumolone), on se trouve face à un **DIASTEREOISOMERE**... de la molécule A.

Dessiner un énantiomère et un diastéréoisomère du menthol.

