

Durée: 2h

CALCULATRICES AUTORISEES

Quelques consignes pour bien démarrer :

- □ Parcourir rapidement l'ensemble de l'énoncé afin de repérer les parties que vous pouvez aborder facilement.
- □ Ne restez pas trop longtemps bloqué sur une question.
- ☐ Les résultats doivent encadrés ou soulignés sinon ils ne seront pas pris en compte.
- □ On prendra bien soin, quand cela est possible, de donner le résultat sous la forme d'une expression littérale en fonction des données de l'énoncé, puis ensuite de faire l'application numérique.

Données:

La constante des gaz parfaits vaut : R = 8,314 J.mol⁻¹.K⁻¹

Conversions: $1,0 \text{ bar} = 1,0.10^5 \text{ Pa}$ $T(K) = T(^{\circ}C) + 273,15$

Cours: Nomenclature

Compléter l'annexe 1, la détacher et la rendre avec la copie.

Exercice 1 : Cinétique de réduction de Hg²⁺ par Fe²⁺ (Mines Ponts MP/PSI)

On s'intéresse à la cinétique de réduction de Hg^{2+} par Fe^{2+} :

$$2Fe^{2+} + 2Hg^{2+} \rightarrow Hg_2^{2+} + 2Fe^{3+}$$

On supposera que la loi de vitesse suit la forme $v = k[\text{Fe}^{2+}]^p[\text{Hg}^{2+}]^q$. On suit la réaction par spectrophotométrie avec différentes concentrations initiales $[\text{Fe}^{2+}]_0$ et $[\text{Hg}^{2+}]_0$, on obtient les résultats suivants :

Expérience n°1 : $[Fe^{2+}]_0 = 0,100 \text{ mol.L}^{-1} \text{ et } [Hg^{2+}]_0 = 0,100 \text{ mol.L}^{-1}$

t(min)	0	1,00	2,00	3,00
[Hg ²⁺] (mol/L)	0,100	0,0714	0,0556	0,0455

<u>Expérience n°2 : $[Fe^{2+}]_0 = 0,100 \text{ mol.L}^{-1} \text{ et } [Hg^{2+}]_0 = 1,00.10^{-3} \text{ mol.L}^{-1}$ </u>

t(min)	0	1,00	2,00	4,00
[Hg ²⁺] (10 ⁻³ mol.L ⁻¹)	1,0	0,66	0,45	0,20

- **1.** Expliquer l'intérêt du choix $[Fe^{2+}]_0 = [Hg^{2+}]_0$ dans la première expérience.
- **2.** Expliquer l'intérêt du choix $[Fe^{2+}]_0 \gg [Hg^{2+}]_0$ dans la deuxième expérience.
- **3.** Montrer que l'ordre global de la réaction est 2. En déduire la valeur de la constante de vitesse *k*.
- **4.** Montrer que les ordres partiels vérifient p = q = 1. Vérifier la valeur de k trouvée dans la question précédente.

Exercice 2 : Cinétique de substitutions nucléophiles

On s'intéresse à la cinétique de réactions de substitutions nucléophiles :

$$RX + HO^- \rightarrow ROH + X^-$$

Au cours de ces réactions, le nucléophile HO^- se substitue - dans le dérivé halogéné RX - à l'atome d'halogène X porté par le groupe alkyle R .

${m \mathcal{C}}$ AS OU RX EST LE 2-CHLORO-2-METHYLPROPANE : SUIVI DE LA REACTION PAR TITRAGE

On étudie la réaction :
$$(CH_3)_3CCl + HO^- \rightarrow (CH_3)_3COH + Cl^-$$

On part d'un mélange initial équimolaire de réactifs de concentration C_0 = 5,10.10⁻² mol.L⁻¹ et on suit le déroulement de la réaction par titrage acido-basique ; à différents instants t, on prélève un échantillon de volume V_0 = 5,00 mL que l'on place dans un bain de glace avant de le doser par de l'acide chlorhydrique de concentration C_A = 2,50.10⁻² mol.L⁻¹. Soit $V_{A,\acute{e}q}$ le volume équivalent d'acide chlorhydrique (H₃O⁺ + Cl⁻) nécessaire pour doser les ions hydroxyde HO^- restant en solution.

t (min)	30,0	60,0	120	240	360	480
$V_{{\scriptscriptstyle A},{\acute e}q}$ (mL)	9,48	8,83	7,63	5,70	4,28	3,13

- 1. Pourquoi refroidit-on le prélèvement dans un bain de glace avant de le doser ?
- Etablir l'expression de la concentration en RX en fonction du temps dans le cas d'une réaction d'ordre global 1. Que peut-on tracer pour vérifier l'hypothèse d'un ordre global 1 ?
- **3.** Ecrire l'équation bilan de la réaction de titrage entre les ions H_3O^+ et les ions HO^- . Grâce à la relation à l'équivalence, calculer la concentration en ions hydroxyde HO^- aux différents temps t.
- **4.** Vérifier que la cinétique de la substitution nucléophile est bien d'ordre global 1. En déduire la valeur de la constante de vitesse et calculer le temps de demi-réaction.

CAS OU RX EST LE 1-BROMOPROPANE :

On étudie la réaction : $C_3H_7Br + HO^- \rightarrow C_3H_7OH + Br^-$

On réalise une série d'expériences en prenant différentes concentrations initiales en réactifs RX et HO^- . Pour chaque expérience, on détermine la vitesse initiale v_0 :

Expérience	$[HO^-]_0$ (mol.L $^{ extsf{-1}}$)	$\llbracket RX bracket_0$ (mol.L $^{ extsf{-1}}$)	v_0 (mol.L $^{ ext{-1}}$.min $^{ ext{-1}}$)
N°1	1,00.10 ⁻²	1,00.10 ⁻²	4,40.10 ⁻⁶
N°2	2,00.10 ⁻²	1,00.10 ⁻²	8,80.10 ⁻⁶
N°3	2,00.10 ⁻²	3,00.10 ⁻²	2,64.10 ⁻⁵

- **5.** Expliquer comment déterminer expérimentalement la vitesse initiale.
- **6.** Déterminer les ordres partiels initiaux puis l'ordre global initial.
- **7.** Calculer la constante de vitesse.

CAS OU RX EST L'IODOETHANE :

On étudie la réaction : $C_2H_5I + HO^- \rightarrow C_2H_5OH + I^-$

Pour différents mélanges initiaux stœchiométriques, de concentration C_0 , on donne les temps de demiréaction $t_{1/2}$ déterminés à 298 K.

C_0 (mol.L $^{ extsf{-1}}$)	1,00.10 ⁻²	2,50.10 ⁻²	5,00.10 ⁻²	7,50.10 ⁻²	1,00.10 ⁻¹
$t_{1/2}$ (min)	1,11.10 ³	4,45.10 ²	2,20.10 ²	1,50.10 ²	1,10.10 ²

- 8. Sans calcul, indiquer si les résultats expérimentaux sont compatibles avec une réaction d'ordre global 0 ou 1.
- 9. Montrer que cette substitution nucléophile possède un ordre global égal à 2.
- 10. Comment peut-on faire si on souhaite déterminer les ordres partiels par rapport à chaque réactif ?
- 11. Calculer la constante de vitesse à 298 K.
- L'énergie d'activation de la réaction est E_A = 89,0 kJ.mol⁻¹; calculer la constante de vitesse à 60°C et en déduire le temps de demi-réaction pour une concentration initiale en réactifs de 5,00.10⁻² mol.L⁻¹.

Exercice 3 : Synthèse de l'ammoniac

L'ammoniac $NH_{3(g)}$ est un intermédiaire important dans l'industrie chimique qui l'utilise comme précurseur pour la production d'engrais, d'explosifs et de polymères.

Le procédé Haber-Bosch permet la synthèse de l'ammoniac à partir du diazote, présent en abondance dans l'atmosphère, et du dihydrogène, obtenu par reformage du méthane à la vapeur d'eau selon la réaction d'équation :

 $N_{2(g)}$ + $3H_{2(g)}$ = 2 $NH_{3(g)}$, de constante K° = 2,76.10 $^{-5}$ à la température T = 723 K.

Les réactifs de la synthèse, diazote et dihydrogène, sont introduits en proportions stoechiométriques dans le réacteur qui est maintenu, tout au long de la synthèse, à une pression totale $\bf P$ de 300 bars et à une température $\bf T$ de 723 K. On notera $\bf n_0$ la quantité de matière initiale de diazote introduit dans le réacteur.

- 1. Exprimer la constante d'équilibre en fonction du taux d'avancement τ de la synthèse.
- 2. Calculer la valeur du taux d'avancement τ dans les conditions de la synthèse.

Annexe 1: à détacher et à rendre avec la copie

Nom de l'espèce	Formule chimique
ion carbonate	
ion hydrogénophosphate	
acide sulfurique	
ion hydrogénosulfate	
	HNO ₃
ion nitrate	
ion hydroxyde	
ion thiocyanate	
	CIO
ion bromure	
ion ammonium	