Correction DS2 Chimie

Exercice 1 : Oxydation d'un alcool

- 1. Définition de la vitesse : $v = -\frac{1}{2} \frac{d[C]}{dt}$
- Conditions de la 1^{ère} expérience :
 [C]₀ << [ROH]₀ ,[H⁺]₀ : dégénérescence d'ordre
 On considère qu'à tout instant : [ROH]₀ = [ROH]₀ et [H⁺] = [H⁺]₀ :

$$v = k_1 \cdot [C]^{\alpha}$$
 avec : $k_1 = k [ROH]_0^{\beta} \cdot [H^+]_0^{\gamma}$ (et $n = \alpha$)

3. La courbe $ln([C]/[C]_0) = f(t)$ est modélisable par une droite : $\underline{n} = \alpha = 1$

En effet, pour
$$\alpha = 1$$
 on a : $\mathbf{v} = -\frac{1}{2} \frac{\mathbf{d}[\mathbf{C}]}{\mathbf{d}t} = \mathbf{k}_1[\mathbf{C}] \implies \ln\left(\frac{[\mathbf{C}]}{[\mathbf{C}]_0}\right) = -2.\mathbf{k}_1.\mathbf{t}$

La courbe ln[C]/[C]₀) est une droite décroissante passant par l'origine.

- 4. Détermination de la valeur de k_1 :
 On détermine la pente de la droite : $-2k_1 = -2,4.10^{-2} \text{ min}^{-1}$ Donc : $k_1 = 1,2.10^{-2} \text{ min}^{-1}$
- 5. Temps de demi-réaction : [C] = [C]₀/2 \Rightarrow $\tau = \frac{\ln(2)}{2.k_1} = 28.9 \text{ min}$
- 6. Conditions de la 2^{ème} expérience :
 [C]₀ , [ROH]₀ << [H⁺]₀ : dégénérescence d'ordre
 => On considère qu'à tout instant : [H⁺] = [H⁺]₀ :
 C et ROH sont mélangés dans les proportions stœchiométriques
 => [C] / 2 = [ROH] / 3

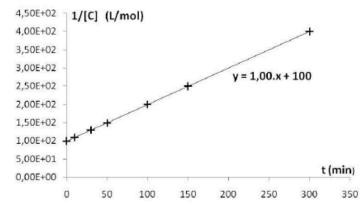
$$\mathbf{v} \; = \; \mathbf{k}. \left[\mathbf{C}\right]^{\alpha}. \left(\frac{3}{2}\left[\mathbf{C}\right]\right)^{\beta}. \left[\mathbf{H}^{+}\right]_{0}^{\gamma} = \; \mathbf{k}. \left(\frac{3}{2}\right)^{\beta}. \left[\mathbf{H}^{+}\right]_{0}^{\gamma} \left[\mathbf{C}\right]^{\alpha+\beta}$$

$$v = k_2 \cdot [C]^{\alpha+\beta}$$
 avec: $k_2 = k \cdot \left(\frac{3}{2}\right)^{\beta} \cdot [H^+]_0^{\gamma}$ (et $m = \alpha + \beta$)

7. Hypothèse : $\alpha + \beta = m = 2$.

$$v = -\frac{1}{2} \frac{d[C]}{dt} = k_2 \cdot [C]^2 \implies \frac{1}{[C]} = \frac{1}{[C]_0} + 2k_2 \cdot t$$

On trace la courbe : 1/[C] = f(t) :



La courbe est bien modélisable par une droite donc <u>l'hypothèse</u> $\alpha + \beta = 2$ est <u>validée</u>. L'équation de la droite donne : $\underline{\mathbf{k}_2} = 5,0.10^{-1} \, \underline{\mathbf{mol}}^{-1}.\underline{\mathbf{L.min}}^{-1}$

$$\alpha + \beta = 2$$
 et $\alpha = 1$ d'où : $\beta = 1$

8. Détermination de γ

Les expériences 1 et 2 ont lieu à la même température, donc la valeur de k est la même dans les deux expériences. On a donc :

$$\frac{\mathbf{k}_{1}}{\mathbf{k}_{2}} = \frac{\mathbf{k} \left[\text{ROH} \right]_{0,\text{exp1}} \cdot \left[\mathbf{H}^{+} \right]_{0,\text{exp1}}^{\gamma}}{\mathbf{k} \cdot \left(\frac{3}{2} \right) \cdot \left[\mathbf{H}^{+} \right]_{0,\text{exp2}}^{\gamma}} = \frac{2}{3} \left[\text{ROH} \right]_{0,\text{exp1}} \left(\frac{\left[\mathbf{H}^{+} \right]_{0,\text{exp1}}}{\left[\mathbf{H}^{+} \right]_{0,\text{exp2}}} \right)^{\gamma}$$

$$\gamma = \frac{\ln\left(\frac{\mathbf{k}_{1}}{\mathbf{k}_{2}} \cdot \frac{3}{2\left[\text{ROH}\right]_{0,\text{expl}}}\right)}{\ln\left(\frac{\left[H^{+}\right]_{0,\text{expl}}}{\left[H^{+}\right]_{0,\text{exp2}}}\right)} = 2$$

9. Calcul de la valeur de k.

$$k_1 = k [ROH]_{0,exp1} \cdot [H^+]_{0,exp1}^2 = 1,2.10^{-2} \text{ min}^{-1} \implies k = 2,1 \text{ mol}^{-3}.L^3.min^{-1}$$

$$\mathbf{k}_2 = \mathbf{k} \left(\frac{3}{2}\right) \cdot \left[\mathbf{H}^+\right]_{0,\text{exp2}}^2 = 5,0.10^{-1} \text{ mol}^{-1}.\text{L.min}^{-1} \implies \mathbf{k} = 2,1 \text{ mol}^{-3}.\text{L}^3.\text{min}^{-1}$$

Conclusion: $k = 2,1 \text{ mol}^{-3}.L^3.\text{min}^{-1}$

10.Influence de la température

Loi d'Arrhenius : k = A.exp(-Ea/RT)

On a alors :	Ea = - R. $\frac{\ln(k_{40^{\circ}C} / k_{30^{\circ}C})}{1 1}$ = - R.	$\frac{\ln(1,8)}{1}$ = 46 kJ.mol ⁻¹
	ידי וידי	313 303
	1 1	313 303

Exercice 2 : Formation de carbure de silicium par CVD

Dressons le tableau d'avancement de la réaction étudiée.

mol	MTS(g) -	→ SiC(s) + 3	3 HC1(g)	$(n_{tot})_{gaz}$
t = 0	\mathbf{n}_0	0	0	\mathbf{n}_0
t	n₀ – ξ	ξ	3 გ	n₀+2 ξ

L'expression du quotient de réaction s'obtient en utilisant la loi des gaz parfaits pour la pression partielle de chaque constituant : $P_i = \frac{n_i.RT}{V}$:

$$Q_r = \frac{P_{HCI}^3}{P_{MTS}P^{\circ 2}} = \frac{n_{HCI}^3}{n_{MTS}} \frac{(RT)^2}{V^2P^{\circ 2}}$$

On en déduit l'expression du quotient de réaction demandé :

$$Q_{r} = \frac{27\xi^{3}}{(n_{0} - \xi)} \cdot \frac{(RT)^{2}}{V^{2}P^{\circ 2}}$$

On utilise le tableau d'avancement établi Q°1 :

Relation des gaz parfaits :
$$P.V = (n_0 + 2\xi).R.T$$
 donc : $\xi = \frac{P.V}{2R.T} - \frac{n_0}{2}$

$$\begin{split} \mathbf{D}^{\text{'}} o \dot{\mathbf{u}} : [\text{MTS}] = & \frac{\left(\mathbf{n}_{_{0}} \text{-} \frac{F.V}{2R.T} + \frac{\mathbf{n}_{_{0}}}{2}\right)}{V} = \frac{3.\mathbf{n}_{_{0}}}{2V} - \frac{P}{2RT} \\ & \boxed{[\text{MTS}] = \frac{3.\mathbf{n}_{_{0}}}{2V} - \frac{P}{2RT}} \end{split}$$

Pour chacun des 3 suivis cinétiques, on cherche l'instant pour lequel [MTS] = [MTS]₀ / 2:

τ ₄	21 min	21 min	21 min
[MTS] ₀ /2 (mol.L ⁻¹)	0,15	0,10	0,05
[MTS] ₀ (mol.L ⁻¹)	0,30	0,20	0,10

 $τ_{\frac{1}{2}}$ est indépendant de [MTS]₀, donc $\underline{\alpha} = 1$

En effet, dans le cadre d'un ordre $\alpha = 1$:

$$v = -\frac{d[MTS]}{dt} = k[MTS] \qquad d'où: \boxed{ln\left(\frac{[MTS]}{[MTS]_0}\right) = -k.t}$$
(1)

[MTS] = [MTS]₀/2 =>
$$\tau_{1/2} = \frac{\ln 2}{k}$$
 (2) $\tau_{\%}$ est indépendant de [MTS]₀

4. On utilise la relation (2) ci-dessus : $k = 3,3.10^{-2} \text{ min}^{-1} \text{ à } T_1 = 1200 \text{ K}.$

A cet instant, on a donc (ξ = 0,25.n₀):

mol	MTS(g) -	→ SiC(s) + 3	3 HC1(g)	$(n_{tot})_{gaz}$
t	$0,75.n_0$	0,25.n ₀	$0,75.n_0$	1,5.n ₀

$$M = x_{MTS}M(MTS) + x_{HCl}M(HCl) = \frac{0.75}{1.5} \times 150 + \frac{0.75}{1.5} \times 36.5$$

$$M = \frac{1}{2} \times 150 + \frac{1}{2} \times 36,5$$

AN : $M = 93,3 \text{ g.mol}^{-1}$

6. A $t_{3/4}$, [MTS] = [MTS]₀/4

On utilise la relation (1) ci-dessus
$$\Rightarrow \tau_{3/4} = \frac{\ln 4}{k} = \frac{2 \ln 2}{k} \Rightarrow \boxed{\tau_{3/4} = 2 \tau_{1/2}}$$

7. Loi d'Arrhenius (à T₁ = 1200K et à T₂ = 1300 K) : k_i = A.exp(-Ea/RT_i)

$$D'o\dot{u}: \boxed{E_{a} = -R \frac{\ln(k_{2}/k_{1})}{\frac{1}{T_{2}} - \frac{1}{T_{1}}} = -R \frac{\ln(\tau_{1}/\tau_{2})}{\frac{1}{T_{2}} - \frac{1}{T_{1}}}$$

Or: $\tau_1 = 20\tau_2 \text{ donc}$: **Ea = 390 kJ.mol**⁻¹

