# Eléments de Correction TP 1 Dosage par étalonnage



Lors de la rédaction du compte rendu, bien différencier les différents paragraphes

# **Objectifs**

- Déterminer la nature du colorant présent dans le bonbon.
- Doser ce colorant afin de répondre à la question posée.

# Protocole expérimental

- Couper la tête d'un Schtroumph afin de ne garder que la partie bleue.
- Préparer une solution de Schtroumph dans un volume précis et connu. Pour ce faire :
  - O Dissoudre un bonbon dans de l'eau distillée en chauffant (*Rappel : la solubilité augmente avec la température*). On utilisera un erlenmeyer et un volume inférieur à 50 mL.
  - Transvaser cette solution dans une fiole jaugée de 50,0 mL et compléter jusqu'au trait de jauge avec de l'eau distillée.
- Tracer le spectre d'absorption de la solution de bonbon afin d'identifier le bleu.
- Réaliser une gamme de solutions étalon de concentrations connues, à partir de la solution mère de bleu fournie.

Pour préparer les solutions étalon à partir de la solution mère, il est judicieux d'utiliser deux burettes graduées :

- -l'une remplie avec de l'eau distillée
- -l'autre avec la solution mère

On utilise des tubes à essai dans lesquels on verse chacune des solutions, avec un volume total constant et égal à 10,0 mL afin de simplifier les calculs.

- Se placer à la longueur d'onde de travail choisi, puis mesurer l'absorbance de chaque solution étalon.
- Tracer la droite d'étalonnage.
- Mesurer l'absorbance de la solution de bonbon et en déduire sa concentration en colorant bleu.

#### Résultats

### Obtention du spectre d'absorption de la solution aqueuse bleue de bonbon

Vous devez tracer le spectre avec un titre complet du type :

Spectre d'absorption de la solution aqueuse de bonbon

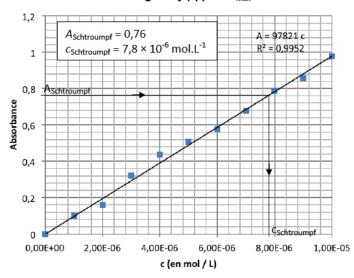
On doit voir apparaître sur le spectre  $\lambda_{max} = 640 \text{ nm}$ .

On en conclut alors, par comparaison avec les spectres d'absorption fournis, que le bleu présent est le <u>bleu</u> <u>patenté.</u>

# Réalisation de l'échelle de teinte en bleu patenté V

Les solutions étalon sont préparées à partir de la solution mère de bleu patentée V fournie à  $C_{mère} = 1,0.10^{-5}$  mol.L<sup>-1</sup>.

On se place à la longueur d'onde de travail  $\underline{\lambda}_{max}$  = 640 nm et on mesure l'absorbance des différentes solutions étalons.


Voici le type de tableau qu'il faudrait remplir :

| Solution                                  | 0 (mère)             | 1 | 2 | 3 | 4 | 5                    | Schtroumf |
|-------------------------------------------|----------------------|---|---|---|---|----------------------|-----------|
| Concentration (mol.L <sup>-1</sup> )      | 1,0.10 <sup>-5</sup> |   |   |   |   | 1,0.10 <sup>-6</sup> | Inconnue  |
| Volume total de solution (mL)             |                      |   |   |   |   |                      |           |
| Volume de solution mère<br>introduit (mL) |                      |   |   |   |   |                      |           |
| Absorbance                                |                      |   |   |   |   |                      |           |

Méthode : Pour que la courbe d'étalonnage soit pertinente, il faut que la concentration inconnue soit comprise entre les valeurs extrêmes de la gamme étalon.

**Droite d'étalonnage** Elle est tracée au tableur.

Solutions de bleu patenté V (E131) Droite d'étalonnage A=f(c) pour  $\lambda_{\max}=640$  nm



Les titres des graphes sont très importants : bien préciser de quoi on parle ! Ici, préciser la longueur d'onde de travail est essentiel.

# Exploitation

La masse de bleu patenté V contenu dans un bonbon est m = c V MA.N. :  $m = 7.8 \times 10^{-6} \text{ x } 50 \times 10^{-3} \text{ x } 560 = 2.2 \times 10^{-4} \text{ g} = \textbf{0,22 mg}$ .

La D.J.A. en bleu patenté V (E131) que Gargamel (65 kg) peut ingérer est :

D.J.A. =  $65 \times 2.5 = 1.6 \times 10^{2} \text{ mg} = 1.6 \times 10^{-1} \text{ g}.$ 

Le nombre N de bonbons que Gargamel peut manger chaque jour sans dépasser la DJA du bleu patenté V est tel que :  $N \le (1.6 \times 10^{-1}) / (2.2 \times 10^{-4}) = 3 \times 10^{2}$  bonbons !

### Validation



- La valeur du coefficient de corrélation. Il faut copier au moins jusqu'au premier chiffre qui n'est pas égal à 9.
- Il faut également vérifier que le spoints sont alignés à l'œil nu.