S

Interrogation de cours 3 chimie

Sujet A

 Remplir le tableau d'avancement suivant en fonction de l'avancement molaire et de n₀. On supposera que la réaction est totale.

mol	Ni _(s)	+ 4 CO _(g)	= Ni(CO) _{4(g)}
t = 0	n ₀	2.n ₀	0
t quelconque	010- E	2mo-45	<u>ال</u>
t final $\xi = \frac{0.00}{0.00}$	mo/2	0	mo 2)

Qui est le réactif limitant ? 💢

Que vaut l'avancement maximal ?
$$\xi_{max} = \min \left\{ m_0 ; \frac{m_0}{2} \right\} = \frac{m_0}{2}$$

Quelle quantité initiale de CO aurait-il fallu pour que les proportions soient stoechiométriques?

3. Définir le taux de transformation τ d'une réaction et l'exprimer pour le cas ci-dessus, en fonction de ξ .

4. Remplir le tableau d'avancement ci-dessous mais cette fois-ci, en fonction de τ et non de ξ .

mol	Ni _(s)	+ 4 CO _(g)	= Ni(CO) _{4(g)}
t = 0	n ₀	2.n ₀	0
t quelconque	$m_o(1-\frac{v}{2})$	2mo (1-2)	mot 2

 Définir le rendement r d'une réaction et le calculer dans le cas précédent si on obtient 0,3.n₀ mol de Ni(CO)_{4(p)}

P

Nom:

Interrogation de cours 3 chimie

Sujet B

 Remplir le tableau d'avancement suivant en fonction de l'avancement molaire et de n₀. On supposera que la réaction est totale.

mol	2NH _{3(g)} +	$H_2SO_{4(aq)} =$	(NH ₄) ₂ SO _{4(s)}
t = 0	3n ₀	2.n ₀	0
t quelconque	3mo-27	2mo - 5	2
t final $\xi = \frac{3}{5} \frac{n_0}{2}$	0		3mo

Qui est le réactif limitant ? NH 3

Que vaut l'avancement maximal ?
$$\xi_{max} = mm \left(\frac{3mo}{2} \right) 2no \left(= \frac{3mo}{2} \right)$$

Quelle quantité initiale de H₂SO₄ aurait-il fallu pour que les proportions soient stoechiométriques?

If faut
$$\frac{m_0(NH_2)}{2} = \frac{m_0(H_2SO_4)}{1} \implies m(H_2SO_4)_0 = \frac{3m_0}{2}$$

3. Définir le taux de transformation τ d'une réaction et l'exprimer pour le cas ci-dessus, en fonction de ξ .

$$\mathcal{V} = \frac{\xi}{\xi_{\text{max}}}$$
 $\forall = \frac{2\xi}{3m_0}$

4. Remplir le tableau d'avancement ci-dessous mais cette fois-ci, en fonction de τ et non de \mathcal{E} .

mol	2NH _{3(g)}	+ H ₂ SO _{4(aq)}	=	$(NH_4)_2SO_{4(s)}$
t = 0	3n ₀	2.n ₀		0
t quelconque	3mo (1-2)	$mo\left(2-\frac{3t}{2}\right)$		3mot

 Définir le rendement r d'une réaction et le calculer dans le cas précédent si on obtient 1,4.n₀ mol de (NH₄)₂SO₄₍₅₎

$$r = \frac{\text{Ffinal}}{\text{Fmax}} = \frac{1}{14} \text{ mo}$$

$$\frac{\text{Fmax}}{\text{Fmax}} = \frac{3\text{mo}}{2} = 1.5 \text{ mo}$$