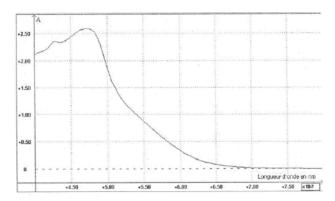
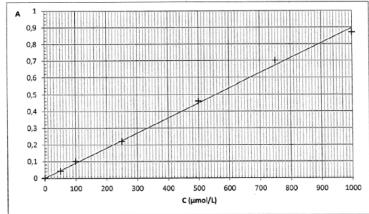
Dosage par étalonnage


A préparer avant le TP

- ☐ Réviser la fiche TP : Spectrophotométrie
- ☐ Faire l'exercice préalable sur le cahier de laboratoire.
- ☐ Voir site chimie-ganivet.fr, rubrique TP

Exercice préalable


On souhaite déterminer la concentration d'une solution aqueuse S de diiode (en présence de Γ). On dispose d'un ensemble de solutions aqueuses de diiode notées Di (D_1 , D_2 , etc.) de concentrations connues toutes différentes. Ces solutions ont des colorations proches de celle de la solution S.

On donne ci-dessous le spectre d'absorption d'une solution aqueuse de diiode de concentration molaire $c = 3.0 \times 10^{-3}$ mol.L⁻¹

1. Quelle est la couleur du diiode en solution aqueuse ? Est-ce cohérent avec l'allure du spectre ?

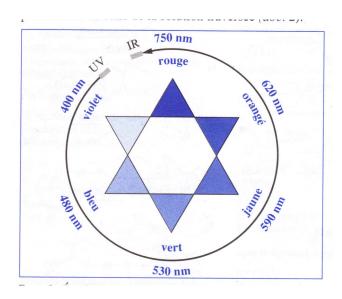
2. À l'aide d'un spectrophotomètre, on mesure avec la même cuve et à la même longueur d'onde l'absorbance A_i de chaque solution D_i de diiode, puis celle de la solution S. On reporte sur un graphique la valeur de l'absorbance A en fonction de celle de la concentration c. Cette courbe est appelée **courbe d'étalonnage.** Elle est donnée cidessous.

- a. Donner la valeur d'une longueur d'onde qui vous paraît bien appropriée pour ces mesures. Justifier brièvement.
 - b. Commenter l'allure de la courbe obtenue. Quelle loi est illustrée ici?
 - c. L'absorbance de la solution S vaut A_S=0,4. Déterminer sa concentration.

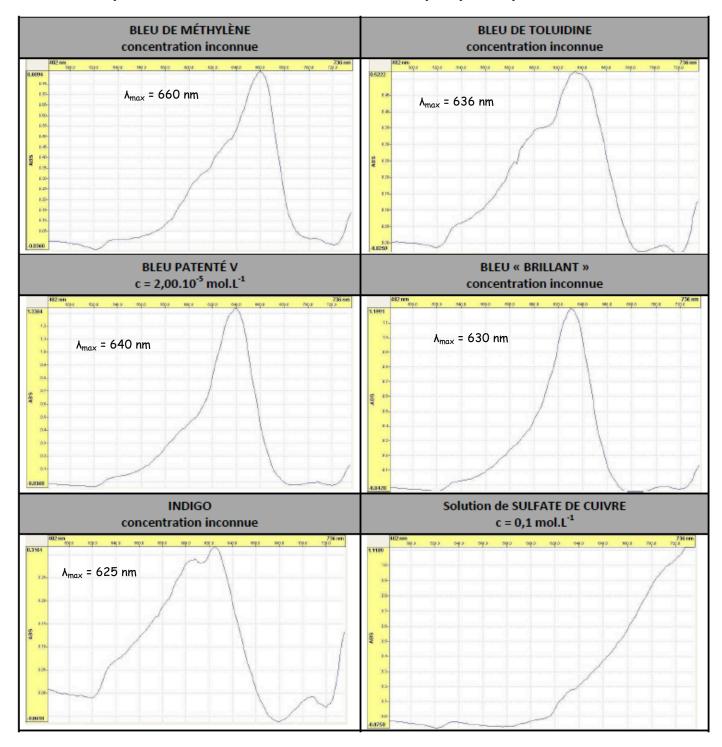
On a ici réalisé un dosage, c'est à dire déterminé la concentration d'une solution, à l'aide d'une méthode <u>physique</u> (la spectrophotométrie). Il s'agit d'un dosage non destructif. On parle ici de dosage par **étalonnage** puisqu'une courbe d'étalonnage a été réalisée.

Objectifs du TP

Travail demandé


- ☐ Mettre en œuvre une démarche expérimentale permettant de répondre à la problématique.
- \square Rédiger un compte rendu sur le cahier de laboratoire, dans lequel apparaîtront <u>distinctement</u>, et <u>dans l'ordre</u>, les paragraphes suivants :
 - Introduction donnant les objectifs du TP;
 - Raisonnement scientifique : hypothèses, calculs nécessaires ;
 - Protocole expérimental : description des expériences réalisées (schémas annotés) ;
 - Résultats expérimentaux : tracé des courbes, résultats obtenus en TP
 - Interprétation des résultats : calculs, réponses aux objectifs
 - Conclusion : discussion des résultats, discussion sur la validité du modèle utilisé.

ANNEXE 1 : DJA de différents colorants


L'Union Européenne fixe, pour tous les colorants alimentaires, les valeurs de dose journalière admissible (DJA). Voici les DJA, en mg de produit absorbable par kg de masse corporelle et par jour, de trois colorants alimentaires bleus.

Colorant	Bleu patenté E131	Indigotine E132	Bleu brillant E133
DJA (mg/kg/jour)	2,5	5,0	10,0
Masse molaire de l'ion	560	420	747

ANNEXE 2 : Lien entre couleur perçue et maximum d'absorption

ANNEXE 3 : Spectres d'absorbance dans le visible de quelques espèces bleues

Compétences utilisées au cours du TP

Compétences	Critères de réussite	
ANALYSER	■ Je réinvestis mes connaissances	
	■ Je propose un protocole pour répondre à la problématique	
	• Dissolution précise du bonbon avec choix du volume,	
	échelle de teinte,	
	• Réinvestissement de la loi de Beer-Lambert	
REALISER	■ Je réalise un protocole en respectant les règles de sécurité.	
	■ J'effectue des mesures avec précision	
	J'utilise le matériel de laboratoire de manière adaptée	
	Utilisation du spectrophotomètre	
	Réglage du zéro (blanc)	
	Solution homogène	
	• Obtention du spectre A = f(lambda)	
	Réalisation de l'échelle de teinte (choix de la verrerie et utilisation correcte)	
	• Choix de lambda _{max}	
	■ J'exploite un graphique et j'effectue des calculs	
	Calcul des concentrations des solutions filles,	
	• Tracé du graphe A = f(c) et exploitation,	
	• Calcul de la concentration molaire volumique de la solution de Schtroumpf©,	
	Calcul de la masse maximale de bleu patenté ingérée par Gargamel,	
	Calcul du maximum de nombre de bonbons que Gargamel peut manger chaque jour	
VALIDER	■ J'exploite des observations, des mesures :	
	• Identification du colorant à l'aide de la table de spectres et du spectre	
	obtenu en classe.	
	■ J'analyse les résultats de façon critique :	
	Nombre maximum de bonbons	
	Conclusion sur la problématique	
COMMUNIQUER	■ Je partage mes idées à l'écrit comme à l'oral	
	■ Je travaille en équipe	

Compétences	Critères de réussite correspondant au niveau A	
ANALYSER	■ Je réinvestis mes connaissances	
	■ Je propose un protocole pour répondre à la problématique	
	Dissolution précise du bonbon avec choix du volume,	
	échelle de teinte,	
	Réinvestissement de la loi de Beer-Lambert	
	■ Je réalise un protocole en respectant les règles de sécurité.	
	J'effectue des mesures avec précision	
	J'utilise le matériel de laboratoire de manière adaptée	
	Utilisation du spectrophotomètre	
	Réglage du zéro (blanc)	
	Solution homogène	
	• Obtention du spectre A = f(lambda)	
	Réalisation de l'échelle de teinte (choix de la verrerie et utilisation correcte)	
REALISER	• Choix de lambda _{max}	
	■ J'exploite un graphique et j'effectue des calculs	
	Calcul des concentrations des solutions filles,	
	• Tracé du graphe A = f(c) et exploitation,	
	• Calcul de la concentration molaire volumique de la solution de	
	Schtroumpf©,	
	Calcul de la masse maximale de bleu patenté ingérée par Gargamel,	
	Calcul du maximum de nombre de bonbons que Gargamel peut manger	
	chaque jour	
VALIDER	■ J'exploite des observations, des mesures :	
	• Identification du colorant à l'aide de la table de spectres et du spectre	
	obtenu en classe.	
	■ J'analyse les résultats de façon critique :	
	Nombre maximum de bonbons	
	Conclusion sur la problématique	
COMMUNIQUER	■ Je partage mes idées à l'écrit comme à l'oral	
	■ Je travaille en équipe	