Spectroscopie Infra-Rouge

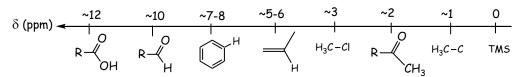
Table des nombres d'onde des principales vibrations

rable des hombres à onde des principales vibrations						
		Intensité				
Liaison	Nombre d'onde cm ⁻¹	F: fort, m : moyen, f: faible				
O-H alcool libre	3580-3670					
O-H alcool lié	3200-3400	m, fine				
N-H amine	3100-3500	F, large				
N-H imine	3100-3500	m				
N-H amide	3100-3500	m				
C-H (carbone AX ₂)	3300-3310	F				
C-H (carbone AX ₃)	3000-3310	m ou f				
C-H aromatique	3030-3100	m				
C-H (carbone AX ₄)	2800-3000	m				
C-H aldéhyde	2750-2900	F				
	2500-3200	M				
O-H acide carboxylique	2100-2250	Fàm; large				
C≡C	2100-2250	f a m, large				
C≡N	1700-1840	F ou m				
C=0 (anhydride)	1770-1840	F; 2 bandes				
C=0 (chlorure d'acyle)	1770-1820	F , 2 bandes				
C=0 (ester)	1650-1730	F				
C=0 (aldéhyde et cétone)	(abaissement de 20 à 30 cm ⁻¹ si	F				
		Г				
0.0()	conjugaison) 1680-1710					
C=O (acide)		F				
C=C	1625-1685					
C=C aromatique	1450-1600	m m; 3 ou 4 bandes				
N=O	1510-1580 et 1325-1365					
C=N	1600-1680	F; 2 bandes				
C-0	1050-1450	F				
C-C	1000-1250	F F				
C-F	1000-1040	-				
C-Cl	700-800	F F				
C-Br	600-750	F F				
C-I	500-600	F				
		<u> </u>				

<u>Parmi ces valeurs, nous noterons</u>:

liaison	0-Н	О-Н С-Н		C=C	
σ (cm ⁻¹)	3600 - 3100	3300 - 2800	1750 - 1700	1650- 1600	

Spectroscopie RMN


Déplacements chimiques moyens de quelques espèces de protons (δ est exprimé en ppm par rapport au TMS pris comme référence) R est un radical aliphatique saturé ; Ar est un radical aromatique.

Protons CH ₃	δ	Protons CH ₂	δ	Protons CH	δ
Lié à un C AX4:		Lié à un C AX4:		Lié à un C AX4:	
CH ₃ -C	0,9	CH ₂ -C	1,3	СН-С	1,5
CH ₃ -C-C=C	0,95-1,1	CH ₂ -C-C=C	1,3	CH-C-OH(ou OR)	1,6-2
CH ₃ -C-C≡O	0,95-1,1	CH ₂ -C-C≡O	1,5	CH-C-Cl	1,6
CH ₃ -C-C≡N	1,15	CH_2 - C - C = N	1,7		
CH ₃ -C-NH ₂ (ou NR ₂)	1,15	CH ₂ -C-NH ₂ (ou NR ₂)	1,3		
CH ₃ -C-Ar	1,25	CH ₂ -C-Ar	1,6		
CH ₃ -C-OH(ou OR)	1,15-1,3	CH ₂ -C-OH(ou OR)	1,8		
CH ₃ -C-Cl	1,5	CH ₂ -C-Cl	1,7		
CH ₃ -C-NO ₂	1,6				
En α insaturation:		En α insaturation:		En α	
CH ₃ -C=C	1,6	CH ₂ -C=C	2,1-2,3	insaturation:	2,5
CH ₃ -C≡C	1,8	CH ₂ -C≡C	2,6	CH-C=C	2,7
CH ₃ -C≡N	2,0	CH ₂ -C≡N	2,4	CH-C≡N	2,6
CH ₃ -CO-OR	2,0	CH ₂ -CO-OR	2,2	СН-СО-ОН	2,5-2,7
СН3-СО-ОН	2,1	CH ₂ -CO-OH	2,35	CH-CO-R	3,0
CH ₃ -CO-NH ₂ (ou	2-2,1	CH ₂ -CO-NH ₂ (ou	2,1-2,2	CH-Ar	3,3
NR ₂)		NR ₂)		CH-CO-Ar	
CH ₃ -C=C-C=O	2,0	CH_2 -C=C-C=O	2,4		
CH ₃ -CO-R	2,1-2,2	CH ₂ -CO-R	2,4		
CH ₃ -Ar	2,3-2,4	CH ₂ -Ar	2,7		
CH ₃ -CO-Ar	2,6	CH ₂ -CO-Ar	2,9		
		C=C=CH ₂ -C=C	2,9		
		C=C=CH ₂ -C=O	3,1-3,2		
		$O=C=CH_2-C=O$	3,4		
		$O=C=CH_2-C=N$	3,4-3,5		

PARTIE CHIMIE ORGANIQUE

Liá à un hátárastama		Liá à un hátárostomo		Lié à hétéroatome	
Lié à un hétéroatome		Lié à un hétéroatome			
CH ₃ -SH(ou SR)	2,0-2,1	CH ₂ -SH(ou SR)	2,4-2,5	CH-SH(ou SR)	3,2
CH ₃ -NH ₂ (ou NR ₂)	2,1-2,3	CH ₂ -NH ₂ (ou NR ₂) 2,5		CH-NH ₂ (ou NR ₂)	2,9
CH ₃ -NH-COR	2,8-2,9	CH ₂ -NH-COR	3,3	CH-NH-COR	3,8-4,1
CH ₃ -Cl	3,0	CH ₂ -Cl	3,6	CH-Cl	4,0
CH ₃ -OR	3,3	CH ₂ -OR	3,4	CH-OR	3,7
СН3-ОН	3,4	CH ₂ -OH	3,6	СН-ОН	3,9
CH ₃ -OCOR	3,7	CH ₂ -OCOR	4,2	CH-OCOR	4,8-5,1
CH ₃ -OAr	3,8	CH ₂ -OAr	4,0	CH-OAr	4,0
CH ₃ -NO ₂	4,3	CH ₂ -NO ₂	4,4	CH-NO ₂	4,5-4,7
~ <u>-</u>	*		,		/- /-
Protons liés à un C		Protons portés par un		ome. Leur positio	1
			hétéroat	-	n dépend
Protons liés à un C	δ	Protons portés par un considérablement du s	hétéroat	-	n dépend
Protons liés à un C insaturé:	δ	Protons portés par un considérablement du s	hétéroat olvant et NH	-	n dépend n.
Protons liés à un C insaturé: -C≡CH	δ 1,8-3,1 4,5-6,0	Protons portés par un considérablement du s OH Alcool (ROH) : 0,7-5,5	hétéroat olvant et NH Amine ali	de la concentratio	n dépend n. (-): 0,6-5,0
Protons liés à un C insaturé: -C≡CH -C=CH-	δ 1,8-3,1 4,5-6,0 6,5-8,2	Protons portés par un considérablement du s OH Alcool (ROH) : 0,7-5,5	hétéroat olvant et NH Amine ali	de la concentratio phatique (RNH ₂ , RNH	n dépend n. (-): 0,6-5,0): 2,9-4,7
Protons liés à un C insaturé: -C≡CH -C=CH-	δ 1,8-3,1 4,5-6,0 6,5-8,2 (benzène:	Protons portés par un considérablement du s OH Alcool (ROH): 0,7-5,5 Phénol (ArOH): 4,5	hétéroat olvant et NH Amine ali nine aroma	de la concentratio phatique (RNH ₂ , RNH tique (ArNH ₂ , ArNH-)	n dépend n. (-): 0,6-5,0): 2,9-4,7
Protons liés à un C insaturé: -C≡CH -C=CH-	δ 1,8-3,1 4,5-6,0 6,5-8,2	Protons portés par un considérablement du s OH Alcool (ROH): 0,7-5,5 Phénol (ArOH): 4,5 Oxime (C=NOH): 8,5-12,0	hétéroat olvant et NH Amine ali nine aroma	de la concentratio phatique (RNH ₂ , RNH tique (ArNH ₂ , ArNH-)	n dépend n. (-): 0,6-5,0): 2,9-4,7
Protons liés à un C insaturé: -C≡CH -C=CH- ArH	δ 1,8-3,1 4,5-6,0 6,5-8,2 (benzène: 7,27)	Protons portés par un considérablement du s OH Alcool (ROH): 0,7-5,5 Phénol (ArOH): 4,5 Oxime (C=NOH): 8,5-12,0 Acide (R-CO-OH): 10,5-12,5	hétéroat olvant et NH Amine ali nine aroma	de la concentratio phatique (RNH ₂ , RNH tique (ArNH ₂ , ArNH-)	n dépend n. (-): 0,6-5,0): 2,9-4,7

☐ Quelques déplacements caractéristiques à connaître :

☐ Exemple de constantes de couplage

⇒ Cas le plus fréquent : H_A et H_B sont portés par 2 C adjacents : ³J = 2 – 10 Hz

⇒ Couplage à travers une liaison multiple :

H _a	² J = 1 - 3 Hz	H _a H _b	³ J = 6 - 14 Hz	H _a	³ J = 13 - 18 Hz
H_b	J _{ortho} = 7-10 Hz	H_{b}	$J_{m ext{\'e}ta}$ = 2-3 Hz	H_b H_a	J _{para} = 1 Hz